#### **North Penn School District**

# **Elementary Math Parent Letter**

#### Grade 4

## Unit 4 – Chapter 9: Relate Fractions and Decimals

#### **Examples for each lesson:**

#### Lesson 9.1

#### **Relate Tenths and Decimals**



More information on this strategy is available on Animated Math Model #34.

#### **Relate Hundredths and Decimals**



More information on this strategy is available on Animated Math Model #35.

#### Lesson 9.3

#### **Equivalent Fractions and Decimals**



More information on this strategy is available on Animated Math Model #36.

# Relate Fractions, Decimals, and Money

Write the total money amount. Then write the amount as a fraction and as a decimal in terms of a dollar.





Step 1 Count the value of coins from greatest to least. Write the total money amount.











 $$0.25 \longrightarrow $0.35 \longrightarrow $0.40 \longrightarrow $0.45 \longrightarrow $0.5$ 

Step 2 Write the total money amount as a fraction of a dollar.

The total money amount is \$0.50, which is the same as 50 cents.

Think: There are 100 cents in a dollar.

So, the total amount written as a fraction of a dollar is:

 $\frac{50 \text{ cents}}{100 \text{ cents}} = \frac{50}{100}$ 

Step 3 Write the total money amount as a decimal.

Think: I can write \$0.50 as 0.50.

The total money amount is  $\frac{50}{100}$  written as a fraction of a dollar, and 0.50 written as a decimal.

More information on this strategy is available on Animated Math Model # 37.

# **Problem Solving • Money**

Use the strategy act it out to solve the problem.

Jessica, Brian, and Grace earned \$7.50. They want to share the money equally. How much will each person get?

| Read the Problem                                                                                             | Solve the Problem                                                             |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| What do I need to find?                                                                                      | Show the total amount, \$7.50, using     one-dollar bills and quarters.       |
| I need to find the amount of money each person should get                                                    |                                                                               |
| What information do I need to use?                                                                           | Share the one-dollar bills equally.                                           |
| I need to use the total amount, \$7.50, and divide it by 3_, the number of people sharing the money equally. | There is _1_ one-dollar bill left.                                            |
| How will I use the information?                                                                              | Change the dollar bill that is left for4_ quarters. Now there are6_ quarters. |
| I will use <u>dollar bills and coins</u> to<br>model the total amount and<br><u>act out the problem</u> .    | Share the quarters equally.                                                   |
|                                                                                                              |                                                                               |
|                                                                                                              | So, each person gets 2 one-dollar bills                                       |
|                                                                                                              | and 2 quarters, or \$2.50.                                                    |

### Add Fractional Parts of 10 and 100

Sam uses 100 glass beads for a project. Of the beads,  $\frac{35}{100}$  are gold and  $\frac{4}{10}$  are silver. What fraction of the glass beads are gold or silver?

Add  $\frac{35}{100}$  and  $\frac{4}{10}$ .

Step 1 Decide on a common denominator. Use 100.

**Step 2** Write  $\frac{4}{10}$  as an equivalent fraction with a denominator of 100.

$$\frac{4}{10} = \frac{4 \times 10}{10 \times 10} = \frac{40}{100}$$

**Step 3** Add  $\frac{35}{100}$  and  $\frac{40}{100}$ .

$$\frac{35}{100} + \frac{40}{100} = \frac{75}{100}$$
 Add the numerators. Use 100 as the denominator.

So, 100 of the glass beads are gold or silver.

Add \$0.26 and \$0.59.

Step 1 Write each amount as a fraction of a dollar.

$$$0.26 = \frac{26}{100}$$
 of a dollar  $$0.59 = \frac{59}{100}$  of a dollar

$$$0.59 = \frac{59}{100} \text{ of a dollar}$$

**Step 2** Add  $\frac{26}{100}$  and  $\frac{59}{100}$ .

$$\frac{26}{100} + \frac{59}{100} = \frac{85}{100}$$

Add the numerators.
100 is the common denominator.

Step 3 Write the sum as a decimal.

$$\frac{85}{100} = 0.85$$

So, 
$$$0.26 + $0.59 = $0.85$$

#### **Compare Decimals**

```
Alfie found 0.2 of a dollar and Gemma found 0.23 of a dollar.
Which friend found more money?
To compare decimals, you can use a number line.
Step 1 Locate each decimal on a number line.
       0.10
Step 2 The number farther to the right is greater.
       0.23 > 0.2, so Gemma found more money.
To compare decimals, you can compare equal-size parts.
Step 1 Write 0.2 as a decimal in hundredths.
       0.2 is 2 tenths, which is equivalent to 20 hundredths.
       0.2 = 0.20
Step 2 Compare.
       23 hundredths is greater than 20 hundredths,
       so 0.23 > 0.2.
So, Gemma found more money.
```

#### Vocabulary

**Decimal** – a number with one or more digits to the right of the decimal point

**Decimal point** – a symbol used to separate dollars from cents in a money amount and to separate the ones and the tenths place in a decimal

**Equivalent decimals** – two or more decimals that name the same amount

Hundredth – one of one hundred equal parts

**Tenth** – one of ten equal parts

**Equivalent fractions** – two or more fractions that name the same amount

**Fraction** – a number that names part of a whole or part of a group

Compare – to describe whether numbers are equal to, less than, or greater than each other